首页> 外文OA文献 >Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation
【2h】

Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation

机译:医学图像的迭代深度卷积编码器 - 解码器网络   分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel medical image segmentation using iterativedeep learning framework. We have combined an iterative learning approach and anencoder-decoder network to improve segmentation results, which enables toprecisely localize the regions of interest (ROIs) including complex shapes ordetailed textures of medical images in an iterative manner. The proposediterative deep convolutional encoder-decoder network consists of two mainpaths: convolutional encoder path and convolutional decoder path with iterativelearning. Experimental results show that the proposed iterative deep learningframework is able to yield excellent medical image segmentation performancesfor various medical images. The effectiveness of the proposed method has beenproved by comparing with other state-of-the-art medical image segmentationmethods.
机译:在本文中,我们提出了一种使用迭代深度学习框架的新型医学图像分割方法。我们结合了迭代学习方法和编码器/解码器网络来改善分割结果,从而能够以迭代方式精确定位感兴趣区域(ROI),包括复杂形状或医学图像的详细纹理。所提出的迭代深度卷积编码器/解码器网络由两条主要路径组成:卷积编码器路径和带迭代学习的卷积解码器路径。实验结果表明,所提出的迭代深度学习框架能够针对各种医学图像产生出色的医学图像分割性能。通过与其他最新医学图像分割方法进行比较,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号